Consistent Modeling of the Static and Time-Derivative Cepstrums for Speech Recognition Using HSPTM
نویسندگان
چکیده
Most speech models represent the static and derivative cepstral features with separate models that can be inconsistent with each other. In our previous work, we proposed the hidden spectral peak trajectory model (HSPTM) in which the static cepstral trajectories are derived from a set of hidden trajectories of the spectral peaks (captured as spectral poles) in the time-frequency domain. In this work, the HSPTM is generalized such that both the static and derivative features are derived from a single set of hidden pole trajectories using the well-known relationship between the spectral poles and cepstral coefficients. As the pole trajectories represent the resonance frequencies across time, they can be interpreted as formant tracks in voiced speech which have been shown to contain important cues for phonemic identification. To preserve the common recognition framework, the likelihood functions are still defined in the cepstral domain with the acoustic models defined by the static and derivative cepstral trajectories. However, these trajectories are no longer separately estimated but jointly derived, and thus are ensured to be consistent with each other. Vowel classification experiments were performed on the TIMIT corpus, using low complexity models (2-mixture). They showed 3% (absolute) classification error reduction compared to the standard HMM of the same complexity.
منابع مشابه
Allophone-based acoustic modeling for Persian phoneme recognition
Phoneme recognition is one of the fundamental phases of automatic speech recognition. Coarticulation which refers to the integration of sounds, is one of the important obstacles in phoneme recognition. In other words, each phone is influenced and changed by the characteristics of its neighbor phones, and coarticulation is responsible for most of these changes. The idea of modeling the effects o...
متن کاملشبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملOff-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model
In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...
متن کاملPresentation of K Nearest Neighbor Gaussian Interpolation and comparing it with Fuzzy Interpolation in Speech Recognition
Hidden Markov Model is a popular statisical method that is used in continious and discrete speech recognition. The probability density function of observation vectors in each state is estimated with discrete density or continious density modeling. The performance (in correct word recognition rate) of continious density is higher than discrete density HMM, but its computation complexity is very ...
متن کاملPresentation of K Nearest Neighbor Gaussian Interpolation and comparing it with Fuzzy Interpolation in Speech Recognition
Hidden Markov Model is a popular statisical method that is used in continious and discrete speech recognition. The probability density function of observation vectors in each state is estimated with discrete density or continious density modeling. The performance (in correct word recognition rate) of continious density is higher than discrete density HMM, but its computation complexity is very ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006